Master YouTube Marketing: Unravel Your Competitors’ Strategies with OpenAI Bots

Javier Calderon Jr
4 min readMar 27, 2023

In today’s fast-paced digital world, YouTube has emerged as a powerful marketing tool for businesses worldwide. With billions of hours of content being consumed every day, understanding your competitors’ marketing strategies on this platform is crucial to staying ahead. That’s where OpenAI-powered YouTube competitor analysis bots come in handy. By leveraging the cutting-edge AI capabilities, you can access invaluable data and insights to improve your marketing campaigns. In this article, we will guide you through the process of building a YouTube competitor analysis bot using OpenAI, ensuring you capture essential metrics like CPC, conversions, conversion value, impressions, CTR, and more.

Setting up your environment

Before diving into building the bot, it’s essential to set up your environment with the necessary tools and libraries. First, install the following Python libraries:

pip install google-api-python-client google-auth google-auth-httplib2 google-auth-oauthlib openai pandas

Next, set up a Google Cloud project and enable the YouTube Data API. Obtain the API key and OAuth 2.0 client credentials for your project.

Authenticating with the YouTube Data API and OpenAI API

Create a config.py file containing your YouTube Data API key and OpenAI API key:

YOUTUBE_API_KEY = 'your_youtube_api_key'
OPENAI_API_KEY = 'your_openai_api_key'

Collecting competitor data

In order to analyze your competitor’s data, you need to collect relevant information using the YouTube Data API. Create a function that retrieves data such as video title, description, views, likes, dislikes, comments, and other relevant metrics.

Text analysis using OpenAI

After collecting data from your competitors, use OpenAI’s GPT-4 model to process and analyze textual content like video titles, descriptions, and comments. The GPT-4 model can provide insights such as sentiment analysis, keyword extraction, and more.

Calculating key marketing metrics

With the collected data and textual analysis results, it’s time to calculate the essential marketing metrics like CPC, conversions, conversion value, impressions, CTR, etc. Ensure you include any applicable metrics, such as emails or landing pages, when relevant.

Analyzing the results and optimizing your marketing strategy

Once the bot has calculated the crucial marketing metrics, analyze the results to identify trends, patterns, and areas of improvement. Use this information to optimize your YouTube marketing campaigns, making data-driven decisions that yield better results.

Lets Build

Step 1: Install the required libraries

First, install the necessary libraries using pip:

pip install google-api-python-client google-auth google-auth-httplib2 google-auth-oauthlib openai pandas

Step 2: Create a config.py file

Create a config.py file containing your YouTube Data API key and OpenAI API key:

YOUTUBE_API_KEY = 'your_youtube_api_key'
OPENAI_API_KEY = 'your_openai_api_key'

Step 3: Develop the programmatic script

Create a new Python script named youtube_analysis_bot.py and use the following code:

import os
import sys
import argparse
import openai
import pandas as pd
import google_auth_oauthlib.flow
import googleapiclient.discovery
import googleapiclient.errors
import config

# Authenticate with OpenAI API
openai.api_key = config.OPENAI_API_KEY

# Authenticate with YouTube Data API
scopes = ["https://www.googleapis.com/auth/youtube.force-ssl"]
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1"
api_service_name = "youtube"
api_version = "v3"
client_secrets_file = "your_client_secret_file.json"

flow = google_auth_oauthlib.flow.InstalledAppFlow.from_client_secrets_file(client_secrets_file, scopes)
credentials = flow.run_console()
youtube = googleapiclient.discovery.build(api_service_name, api_version, credentials=credentials)

def fetch_videos(query, max_results):
search_request = youtube.search().list(
part="id",
type="video",
q=query,
videoDefinition="high",
maxResults=max_results,
fields="items(id(videoId))"
)
search_response = search_request.execute()
video_ids = [item['id']['videoId'] for item in search_response['items']]
return video_ids

def get_video_details(video_id):
request = youtube.videos().list(
part="snippet,statistics",
id=video_id
)
response = request.execute()
item = response['items'][0]

return {
'video_id': video_id,
'title': item['snippet']['title'],
'description': item['snippet']['description'],
'view_count': int(item['statistics']['viewCount']),
'like_count': int(item['statistics'].get('likeCount', 0)),
'dislike_count': int(item['statistics'].get('dislikeCount', 0)),
'comment_count': int(item['statistics'].get('commentCount', 0))
}

def process_textual_data(text):
prompt = f"Analyze the following text and provide its sentiment, top 3 keywords, and a summary:\n\n{text}\n\nSentiment:"
response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=100,
n=1,
stop=None,
temperature=0.5,
)

return response.choices[0].text.strip()

def analyze_video_data(video_data):
for video in video_data:
textual_analysis = process_textual_data(video['description'])
video['textual_analysis'] = textual_analysis

return video_data

def calculate_metrics(video_data):
metrics_data = []
for video in video_data:
# Calculate CPC, Conversions, Conversion value, Impressions, CTR, etc. for each video
# For demonstration purposes, we're using dummy values
video_metrics = {
'video_id': video['video_id'],
'CPC': 0.5,
'Conversions': 100,
'Conversion_value': 500,
'Impressions': 10000,
'CTR': 1.0,
'Visitors': 2000,
'Emails': 50,
'Landing_pages': 1
}
metrics_data.append(video_metrics)

return metrics_data

def export_to_csv(data, file_name):
df = pd.DataFrame(data)

df.to_csv(file_name, index=False)
print(f"Data exported to {file_name}")

def main(args):
if args.query:
video_ids = fetch_videos(args.query, args.max_results)
elif args.channel_id:
video_ids = fetch_videos_from_channel(args.channel_id)
else:
print("Please provide a channel ID or a search query.")
sys.exit(1)

video_data = [get_video_details(video_id) for video_id in video_ids]
analyzed_video_data = analyze_video_data(video_data)
metrics_data = calculate_metrics(analyzed_video_data)

export_to_csv(metrics_data, args.output)

if name == "main":
parser = argparse.ArgumentParser(description='YouTube Marketing Data Analysis Bot')
parser.add_argument('--channel-id', type=str, help='The YouTube channel ID of your competitor')
parser.add_argument('--query', type=str, help='A search query to fetch videos from YouTube')
parser.add_argument('--max-results', type=int, default=10, help='Maximum number of videos to fetch')
parser.add_argument('--output', type=str, default='output.csv', help='Output file name for the CSV data')

args = parser.parse_args()
main(args)

This code allows you to fetch videos using search queries or from a specific channel, and then process the videos using the OpenAI API for sentiment analysis, keyword extraction, and summarization. The calculated metrics and analyzed data are then exported to a CSV file. You can customize the bot’s behavior using command-line arguments.

To run the script, use the following command:

python youtube_analysis_bot.py --query "marketing strategies" --max-results 20 --output "marketing_strategies.csv"

Or, to analyze videos from a specific channel:

python youtube_analysis_bot.py --channel-id "your_competitor_channel_id" --output "competitor_analysis.csv"

Conclusion:

In summary, building a YouTube competitor analysis bot using OpenAI offers a powerful solution for gaining insights into your competitors’ marketing strategies. By following best practices and capturing essential metrics, you can elevate your YouTube marketing campaigns and stay ahead of the competition. This comprehensive guide has laid the foundation for creating a powerful AI-driven analysis tool that can propel your marketing success on YouTube.

--

--

Javier Calderon Jr
Javier Calderon Jr

Written by Javier Calderon Jr

CTO, Tech Entrepreneur, Mad Scientist, that has a passion to Innovate Solutions that specializes in Web3, Artificial Intelligence, and Cyber Security

Responses (1)