Building a Quantum-Resistant Cryptocurrency with Qiskit

Javier Calderon Jr
5 min readMar 16, 2023

Introduction

With the advent of quantum computing, the security of existing cryptographic systems is at risk. Quantum computers have the potential to break widely used cryptographic algorithms, including RSA and ECC, threatening the security of existing cryptocurrencies. In this article, we will discuss how to use Qiskit, an open-source quantum computing framework, to build a quantum-resistant cryptocurrency. We will provide code snippets with each statement, best practices, and a step-by-step guide.

Setting up the environment

To get started, you’ll need to have Python 3 installed on your machine and install the necessary libraries.

pip install qiskit

Import Qiskit and other necessary libraries

import qiskit
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram

Designing a quantum-resistant cryptographic algorithm

One of the most promising quantum-resistant cryptographic algorithms is the lattice-based cryptography, such as the Learning with Errors (LWE) problem. It is believed to be resistant to attacks by quantum computers. We will use this approach to design our cryptocurrency.

Implementing the LWE problem

We will implement a basic version of the LWE problem for demonstration purposes. In a real-world scenario, you would use a more sophisticated version with larger parameters.

import numpy as np

def generate_lwe_keypair(n=10, q=101):
secret_key = np.random.randint(0, q, size=n)
public_key = np.random.randint(0, q, size=n)
return secret_key, public_key

Implementing encryption and decryption functions

Now, we will implement the encryption and decryption functions using the LWE keypair.

def encrypt_lwe(plaintext, public_key, n=10, q=101):
noise = np.random.randint(0, q, size=n)
ciphertext = (public_key * plaintext + noise) % q
return ciphertext

def decrypt_lwe(ciphertext, secret_key, n=10, q=101):
plaintext = (ciphertext - secret_key) % q
return plaintext

Creating a simple blockchain structure

In this step, we will create a simple blockchain structure to store our quantum-resistant cryptocurrency transactions.

import hashlib

class Block:
def __init__(self, index, previous_hash, transactions):
self.index = index
self.previous_hash = previous_hash
self.transactions = transactions
self.hash = self.compute_hash()

def compute_hash(self):
data = str(self.index) + str(self.previous_hash) + str(self.transactions)
return hashlib.sha256(data.encode()).hexdigest()

Implementing the blockchain

Now, we will implement a simple blockchain using the quantum-resistant cryptographic algorithm.

class QuantumResistantBlockchain:
def __init__(self):
self.chain = [self.create_genesis_block()]

def create_genesis_block(self):
return Block(0, "0", [])

def add_block(self, transactions):
new_block = Block(len(self.chain), self.chain[-1].hash, transactions)
self.chain.append(new_block)

Best Practices

  • Ensure you understand the underlying cryptographic algorithms and their security implications.
  • Use a more sophisticated version of the LWE problem with larger parameters for enhanced security.
  • Opt for well-established and peer-reviewed quantum-resistant cryptographic algorithms.
  • Regularly update your quantum-resistant algorithms to stay ahead of the latest advancements in quantum computing.
  • Implement a consensus mechanism, such as Proof of Work or Proof of Stake, to secure your blockchain from potential attacks and maintain the integrity of the network.

Testing the quantum-resistant cryptocurrency

Now, let’s test our quantum-resistant cryptocurrency by creating a simple transaction and adding it to the blockchain.

# Generate LWE keypairs for two users
alice_secret_key, alice_public_key = generate_lwe_keypair()
bob_secret_key, bob_public_key = generate_lwe_keypair()

# Alice sends 10 coins to Bob
transaction = {
"sender": alice_public_key,
"recipient": bob_public_key,
"amount": 10
}

# Encrypt the transaction using Alice's public key
encrypted_transaction = encrypt_lwe(transaction, alice_public_key)

# Create the quantum-resistant blockchain
qr_blockchain = QuantumResistantBlockchain()

# Add the encrypted transaction to the blockchain
qr_blockchain.add_block([encrypted_transaction])

# Decrypt the transaction using Alice's secret key
decrypted_transaction = decrypt_lwe(encrypted_transaction, alice_secret_key)

# Verify the transaction
print("Original transaction: ", transaction)
print("Decrypted transaction: ", decrypted_transaction)

Putting it all together

# Import necessary libraries
import qiskit
import numpy as np
import hashlib

# LWE keypair generation
def generate_lwe_keypair(n=10, q=101):
secret_key = np.random.randint(0, q, size=n)
public_key = np.random.randint(0, q, size=n)
return secret_key, public_key

# LWE encryption function
def encrypt_lwe(plaintext, public_key, n=10, q=101):
noise = np.random.randint(0, q, size=n)
ciphertext = (public_key * plaintext + noise) % q
return ciphertext

# LWE decryption function
def decrypt_lwe(ciphertext, secret_key, n=10, q=101):
plaintext = (ciphertext - secret_key) % q
return plaintext

# Block class
class Block:
def __init__(self, index, previous_hash, transactions):
self.index = index
self.previous_hash = previous_hash
self.transactions = transactions
self.hash = self.compute_hash()

def compute_hash(self):
data = str(self.index) + str(self.previous_hash) + str(self.transactions)
return hashlib.sha256(data.encode()).hexdigest()

# Quantum-resistant blockchain class
class QuantumResistantBlockchain:
def __init__(self):
self.chain = [self.create_genesis_block()]

def create_genesis_block(self):
return Block(0, "0", [])

def add_block(self, transactions):
new_block = Block(len(self.chain), self.chain[-1].hash, transactions)
self.chain.append(new_block)

# Generate LWE keypairs for two users
alice_secret_key, alice_public_key = generate_lwe_keypair()
bob_secret_key, bob_public_key = generate_lwe_keypair()

# Alice sends 10 coins to Bob
transaction = {
"sender": alice_public_key,
"recipient": bob_public_key,
"amount": 10
}

# Encrypt the transaction using Alice's public key
encrypted_transaction = encrypt_lwe(transaction, alice_public_key)

# Create the quantum-resistant blockchain
qr_blockchain = QuantumResistantBlockchain()

# Add the encrypted transaction to the blockchain
qr_blockchain.add_block([encrypted_transaction])

# Decrypt the transaction using Alice's secret key
decrypted_transaction = decrypt_lwe(encrypted_transaction, alice_secret_key)

# Verify the transaction
print("Original transaction: ", transaction)
print("Decrypted transaction: ", decrypted_transaction)

Step-by-step explanation:

  1. Import the necessary libraries, including Qiskit, NumPy, and hashlib.
  2. Define the LWE keypair generation function (generate_lwe_keypair), which generates a secret key and a public key.
  3. Define the LWE encryption function (encrypt_lwe), which takes a plaintext message and a public key and returns the encrypted message.
  4. Define the LWE decryption function (decrypt_lwe), which takes an encrypted message and a secret key and returns the decrypted message.
  5. Create a Block class that represents a block in the blockchain, including a method for computing the block's hash.
  6. Create a QuantumResistantBlockchain class that initializes a blockchain with a genesis block and has a method for adding new blocks with transactions.
  7. Generate LWE keypairs for two users, Alice and Bob.
  8. Create a transaction where Alice sends 10 coins to Bob.
  9. Encrypt the transaction using Alice’s public key.
  10. Create a quantum-resistant blockchain and add the encrypted transaction to the blockchain.

Conclusion

By using Qiskit and lattice-based cryptography, we have created a simple quantum-resistant cryptocurrency that can withstand potential attacks from quantum computers. Although our example is basic, it demonstrates the core concepts necessary to build a more sophisticated and secure cryptocurrency. Following the best practices and continuously updating your cryptographic algorithms, you can stay ahead of the curve and ensure the security of your blockchain-based applications in the era of quantum computing.

--

--

Javier Calderon Jr

CTO, Tech Entrepreneur, Mad Scientist, that has a passion to Innovate Solutions that specializes in Web3, Artificial Intelligence, and Cyber Security